Sparse signal representation based on overcomplete dictionaries has recently been extensively investigated, rendering the state-of-the-art results in signal, image and video proce...
Jianzhou Feng, Li Song, Xiaoming Huo, Xiaokang Yan...
SMALLbox is a new foundational framework for processing signals, using adaptive sparse structured representations. The main aim of SMALLbox is to become a test ground for explorati...
Ivan Damnjanovic, Matthew E. P. Davies, Mark D. Pl...
Recent work has demonstrated that using a carefully designed dictionary instead of a predefined one, can improve the sparsity in jointly representing a class of signals. This has m...
Kevin Rosenblum, Lihi Zelnik-Manor, Yonina C. Elda...
Sparse representation theory has been increasingly used in the fields of signal processing and machine learning. The standard sparse models are not invariant to spatial transform...
Sparse coding, which is the decomposition of a vector using only a few basis elements, is widely used in machine learning and image processing. The basis set, also called dictiona...
Louise Benoit, Julien Mairal, Francis Bach, Jean P...