Sampling functions in Gaussian process (GP) models is challenging because of the highly correlated posterior distribution. We describe an efficient Markov chain Monte Carlo algori...
Michalis Titsias, Neil D. Lawrence, Magnus Rattray
Partially observable Markov decision processes (POMDPs) are widely used for planning under uncertainty. In many applications, the huge size of the POMDP state space makes straightf...
Joni Pajarinen, Jaakko Peltonen, Ari Hottinen, Mik...
Researchers often express probabilistic planning problems as Markov decision process models and then maximize the expected total reward. However, it is often rational to maximize ...
Some of the most successful recent applications of reinforcement learning have used neural networks and the TD algorithm to learn evaluation functions. In this paper, we examine t...
Production scheduling, the problem of sequentially con guring a factory to meet forecasted demands, is a critical problem throughout the manufacturing industry. The requirement of...
Jeff G. Schneider, Justin A. Boyan, Andrew W. Moor...