Sciweavers

2108 search results - page 111 / 422
» Tracking in Reinforcement Learning
Sort
View
ICML
2008
IEEE
16 years 2 months ago
An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning
We show that linear value-function approximation is equivalent to a form of linear model approximation. We then derive a relationship between the model-approximation error and the...
Ronald Parr, Lihong Li, Gavin Taylor, Christopher ...
ICML
1996
IEEE
16 years 2 months ago
Sensitive Discount Optimality: Unifying Discounted and Average Reward Reinforcement Learning
Research in reinforcementlearning (RL)has thus far concentrated on two optimality criteria: the discounted framework, which has been very well-studied, and the averagereward frame...
Sridhar Mahadevan
ICES
2003
Springer
125views Hardware» more  ICES 2003»
15 years 7 months ago
Evolving Reinforcement Learning-Like Abilities for Robots
Abstract. In [8] Yamauchi and Beer explored the abilities of continuous time recurrent neural networks (CTRNNs) to display reinforcementlearning like abilities. The investigated ta...
Jesper Blynel
AAAI
2008
15 years 4 months ago
Potential-based Shaping in Model-based Reinforcement Learning
Potential-based shaping was designed as a way of introducing background knowledge into model-free reinforcement-learning algorithms. By identifying states that are likely to have ...
John Asmuth, Michael L. Littman, Robert Zinkov
NIPS
2007
15 years 3 months ago
Online Linear Regression and Its Application to Model-Based Reinforcement Learning
We provide a provably efficient algorithm for learning Markov Decision Processes (MDPs) with continuous state and action spaces in the online setting. Specifically, we take a mo...
Alexander L. Strehl, Michael L. Littman