Sciweavers

641 search results - page 2 / 129
» Training Methods for Adaptive Boosting of Neural Networks
Sort
View
ICANN
2003
Springer
15 years 2 months ago
A Comparison of Model Aggregation Methods for Regression
Combining machine learning models is a means of improving overall accuracy.Various algorithms have been proposed to create aggregate models from other models, and two popular examp...
Zafer Barutçuoglu
AAAI
2004
14 years 11 months ago
Online Parallel Boosting
This paper presents a new boosting (arcing) algorithm called POCA, Parallel Online Continuous Arcing. Unlike traditional boosting algorithms (such as Arc-x4 and Adaboost), that co...
Jesse A. Reichler, Harlan D. Harris, Michael A. Sa...
IJCNN
2007
IEEE
15 years 3 months ago
Two-stage Multi-class AdaBoost for Facial Expression Recognition
— Although AdaBoost has achieved great success, it still suffers from following problems: (1) the training process could be unmanageable when the number of features is extremely ...
Hongbo Deng, Jianke Zhu, Michael R. Lyu, Irwin Kin...
ASC
2004
14 years 9 months ago
Neural network-based colonoscopic diagnosis using on-line learning and differential evolution
In this paper, on-line training of neural networks is investigated in the context of computer-assisted colonoscopic diagnosis. A memory-based adaptation of the learning rate for t...
George D. Magoulas, Vassilis P. Plagianakos, Micha...
86
Voted
BMCBI
2006
146views more  BMCBI 2006»
14 years 9 months ago
Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training
Background: Particle Swarm Optimization (PSO) is an established method for parameter optimization. It represents a population-based adaptive optimization technique that is influen...
Michael Meissner, Michael Schmuker, Gisbert Schnei...