Active set methods for training the Support Vector Machines (SVM) are advantageous since they enable incremental training and, as we show in this research, do not exhibit exponent...
Christopher Sentelle, Georgios C. Anagnostopoulos,...
We show how the regularizer of Transductive Support Vector Machines (TSVM) can be trained by stochastic gradient descent for linear models and multi-layer architectures. The resul...
Michael Karlen, Jason Weston, Ayse Erkan, Ronan Co...
We present a new method for transductive learning, which can be seen as a transductive version of the k nearest-neighbor classifier. Unlike for many other transductive learning me...
As practical pattern classification tasks are often very-large scale and serious imbalance such as patent classification, using traditional pattern classification techniques in ...
In applications such as character recognition, some classes are heavily overlapped but are not necessarily to be separated. For classification of such overlapping classes, either d...