Sciweavers

69 search results - page 8 / 14
» Unsupervised Feature Selection in High Dimensional Spaces an...
Sort
View
ICML
2006
IEEE
15 years 10 months ago
Optimal kernel selection in Kernel Fisher discriminant analysis
In Kernel Fisher discriminant analysis (KFDA), we carry out Fisher linear discriminant analysis in a high dimensional feature space defined implicitly by a kernel. The performance...
Seung-Jean Kim, Alessandro Magnani, Stephen P. Boy...
IDA
2003
Springer
15 years 2 months ago
A Semi-supervised Method for Learning the Structure of Robot Environment Interactions
For a mobile robot to act autonomously, it must be able to construct a model of its interaction with the environment. Oates et al. developed an unsupervised learning method that pr...
Axel Großmann, Matthias Wendt, Jeremy Wyatt
DATAMINE
2006
224views more  DATAMINE 2006»
14 years 9 months ago
Characteristic-Based Clustering for Time Series Data
With the growing importance of time series clustering research, particularly for similarity searches amongst long time series such as those arising in medicine or finance, it is cr...
Xiaozhe Wang, Kate A. Smith, Rob J. Hyndman
ICCV
2011
IEEE
13 years 9 months ago
A Linear Subspace Learning Approach via Sparse Coding
Linear subspace learning (LSL) is a popular approach to image recognition and it aims to reveal the essential features of high dimensional data, e.g., facial images, in a lower di...
Lei Zhang, Pengfei Zhu, Qinghu Hu, David Zhang
SAC
2006
ACM
15 years 3 months ago
The impact of sample reduction on PCA-based feature extraction for supervised learning
“The curse of dimensionality” is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity and classification error in high dimension...
Mykola Pechenizkiy, Seppo Puuronen, Alexey Tsymbal