We address the feature selection problem for hidden Markov models (HMMs) in sequence classification. Temporal correlation in sequences often causes difficulty in applying featur...
Pei Yin, Irfan A. Essa, Thad Starner, James M. Reh...
In this paper, we derive a data mining framework to analyze 3D features on human faces. The framework leverages kernel density estimators, genetic algorithm and an information com...
Sreenivas R. Sukumar, Hamparsum Bozdogan, David L....
Abstract. Automatic pattern classifiers that allow for on-line incremental learning can adapt internal class models efficiently in response to new information without retraining fr...
In this paper we argue that maximum expected utility is a suitable framework for modeling a broad range of decision problems arising in pattern recognition and related fields. Exa...
We present a discriminative shape-based algorithm for object category localization and recognition. Our method learns object models in a weakly-supervised fashion, without requiri...
Marius Leordeanu, Martial Hebert, Rahul Sukthankar