We propose Laplace max-margin Markov networks (LapM3 N), and a general class of Bayesian M3 N (BM3 N) of which the LapM3 N is a special case with sparse structural bias, for robus...
Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we...
— We propose a powerful symmetric kernel classifier for nonlinear detection in challenging rank-deficient multipleantenna aided communication systems. By exploiting the inheren...
Sheng Chen, Andreas Wolfgang, Chris J. Harris, Laj...
We develop an optical flow estimation framework that focuses on motion estimation over time formulated in a Dynamic Bayesian Network. It realizes a spatiotemporal integration of ...
Volker Willert, Marc Toussaint, Julian Eggert, Edg...
We consider the problem of optimizing the number of replicas for event information in wireless sensor networks, when queries are disseminated using expanding rings. We obtain clos...