There is a growing wealth of data describing networks of various types, including social networks, physical networks such as transportation or communication networks, and biologic...
In kernel methods, an interesting recent development seeks to learn a good kernel from empirical data automatically. In this paper, by regarding the transductive learning of the k...
We present a systematic comparison of machine learning methods applied to the problem of fully automatic recognition of facial expressions, including AdaBoost, support vector mach...
Gwen Littlewort, Marian Stewart Bartlett, Ian R. F...
In this paper we present the Dynamic Grow-Shrink Inference-based Markov network learning algorithm (abbreviated DGSIMN), which improves on GSIMN, the state-ofthe-art algorithm for...
Background: Biological networks offer us a new way to investigate the interactions among different components and address the biological system as a whole. In this paper, a revers...
Dong-Chul Kim, Xiaoyu Wang, Chin-Rang Yang, Jean G...