Sciweavers

1436 search results - page 98 / 288
» Using Machine Learning Techniques to Interpret WH-questions
Sort
View
ICML
2006
IEEE
16 years 2 months ago
A continuation method for semi-supervised SVMs
Semi-Supervised Support Vector Machines (S3 VMs) are an appealing method for using unlabeled data in classification: their objective function favors decision boundaries which do n...
Olivier Chapelle, Mingmin Chi, Alexander Zien
IJCNN
2007
IEEE
15 years 7 months ago
Generalised Kernel Machines
Abstract— The generalised linear model (GLM) is the standard approach in classical statistics for regression tasks where it is appropriate to measure the data misfit using a lik...
Gavin C. Cawley, Gareth J. Janacek, Nicola L. C. T...
ICML
2007
IEEE
16 years 2 months ago
Constructing basis functions from directed graphs for value function approximation
Basis functions derived from an undirected graph connecting nearby samples from a Markov decision process (MDP) have proven useful for approximating value functions. The success o...
Jeffrey Johns, Sridhar Mahadevan
ML
2010
ACM
151views Machine Learning» more  ML 2010»
14 years 12 months ago
Inductive transfer for learning Bayesian networks
In several domains it is common to have data from different, but closely related problems. For instance, in manufacturing, many products follow the same industrial process but with...
Roger Luis, Luis Enrique Sucar, Eduardo F. Morales
ICML
2004
IEEE
16 years 2 months ago
K-means clustering via principal component analysis
Principal component analysis (PCA) is a widely used statistical technique for unsupervised dimension reduction. K-means clustering is a commonly used data clustering for unsupervi...
Chris H. Q. Ding, Xiaofeng He