A new scheme of learning similarity measure is proposed for content-based image retrieval (CBIR). It learns a boundary that separates the images in the database into two parts. Im...
Guodong Guo, Anil K. Jain, Wei-Ying Ma, HongJiang ...
In this project (VIRSI) we investigate the promising contentbased retrieval paradigm known as interactive search or relevance feedback, and aim to extend it through the use of syn...
Bart Thomee, Mark J. Huiskes, Erwin M. Bakker, Mic...
Small-sample learning in image retrieval is a pertinent and interesting problem. Relevance feedback is an active area of research that seeks to find algorithms that are robust wi...
Charlie K. Dagli, ShyamSundar Rajaram, Thomas S. H...
In many vision problems, instead of having fully annotated training data, it is easier to obtain just a subset of data with annotations, because it is less restrictive for the use...
Many content-based image retrieval applications suffer from small sample set and high dimensionality problems. Relevance feedback is often used to alleviate those problems. In thi...