Sciweavers

94 search results - page 7 / 19
» Variable Sparsity Kernel Learning
Sort
View
ICML
2006
IEEE
15 years 10 months ago
Kernelizing the output of tree-based methods
We extend tree-based methods to the prediction of structured outputs using a kernelization of the algorithm that allows one to grow trees as soon as a kernel can be defined on the...
Florence d'Alché-Buc, Louis Wehenkel, Pierr...
CVPR
2004
IEEE
15 years 1 months ago
Learning in Region-Based Image Retrieval with Generalized Support Vector Machines
Relevance feedback approaches based on support vector machine (SVM) learning have been applied to significantly improve retrieval performance in content-based image retrieval (CBI...
Iker Gondra, Douglas R. Heisterkamp
NIPS
2008
14 years 11 months ago
Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning
For supervised and unsupervised learning, positive definite kernels allow to use large and potentially infinite dimensional feature spaces with a computational cost that only depe...
Francis Bach
ECAI
2010
Springer
14 years 6 months ago
Feature Selection by Approximating the Markov Blanket in a Kernel-Induced Space
The proposed feature selection method aims to find a minimum subset of the most informative variables for classification/regression by efficiently approximating the Markov Blanket ...
Qiang Lou, Zoran Obradovic
NIPS
2004
14 years 11 months ago
Computing regularization paths for learning multiple kernels
The problem of learning a sparse conic combination of kernel functions or kernel matrices for classification or regression can be achieved via the regularization by a block 1-norm...
Francis R. Bach, Romain Thibaux, Michael I. Jordan