Sciweavers

554 search results - page 34 / 111
» Variable selection using neural-network models
Sort
View
UAI
1996
14 years 11 months ago
Asymptotic Model Selection for Directed Networks with Hidden Variables
We extend the Bayesian Information Criterion (BIC), an asymptotic approximation for the marginal likelihood, to Bayesian networks with hidden variables. This approximation can be ...
Dan Geiger, David Heckerman, Christopher Meek
BMCBI
2007
197views more  BMCBI 2007»
14 years 9 months ago
Boolean networks using the chi-square test for inferring large-scale gene regulatory networks
Background: Boolean network (BN) modeling is a commonly used method for constructing gene regulatory networks from time series microarray data. However, its major drawback is that...
Haseong Kim, Jae K. Lee, Taesung Park
IJCNN
2007
IEEE
15 years 4 months ago
Agnostic Learning versus Prior Knowledge in the Design of Kernel Machines
Abstract— The optimal model parameters of a kernel machine are typically given by the solution of a convex optimisation problem with a single global optimum. Obtaining the best p...
Gavin C. Cawley, Nicola L. C. Talbot
77
Voted
ICASSP
2008
IEEE
15 years 4 months ago
Maximum entropy relaxation for multiscale graphical model selection
We consider the problem of learning multiscale graphical models. Given a collection of variables along with covariance specifications for these variables, we introduce hidden var...
Myung Jin Choi, Venkat Chandrasekaran, Alan S. Wil...
BMCBI
2008
186views more  BMCBI 2008»
14 years 9 months ago
Variable selection for large p small n regression models with incomplete data: Mapping QTL with epistases
Background: Identifying quantitative trait loci (QTL) for both additive and epistatic effects raises the statistical issue of selecting variables from a large number of candidates...
Min Zhang, Dabao Zhang, Martin T. Wells