Support vector machines (SVMs) have proven to be a powerful technique for pattern classification. SVMs map inputs into a high dimensional space and then separate classes with a hy...
William M. Campbell, Joseph P. Campbell, Douglas A...
We introduce a computational design for pattern detection based on a tree-structured network of support vector machines (SVMs). An SVM is associated with each cell in a recursive ...
Background: This paper presents the use of Support Vector Machines (SVMs) for prediction and analysis of antisense oligonucleotide (AO) efficacy. The collected database comprises ...
Gustavo Camps-Valls, Alistair M. Chalk, Antonio J....
Straightforward classification using kernelized SVMs requires evaluating the kernel for a test vector and each of the support vectors. For a class of kernels we show that one can ...
The problem of choosing a good parameter setting for a better generalization performance in a learning task is the so-called model selection. A nested uniform design (UD) methodol...
Chien-Ming Huang, Yuh-Jye Lee, Dennis K. J. Lin, S...