Adapting to rank address the the problem of insufficient domainspecific labeled training data in learning to rank. However, the initial study shows that adaptation is not always...
Keke Chen, Jing Bai, Srihari Reddy, Belle L. Tseng
Cross-domain learning methods have shown promising
results by leveraging labeled patterns from auxiliary domains
to learn a robust classifier for target domain, which
has a limi...
Dong Xu, Ivor Wai-Hung Tsang, Lixin Duan, Stephen ...
Software systems are becoming more and more complex with a large number of interacting partners often distributed over a network. A common dilemma faced by software engineers in b...
We study the prevalent problem when a test distribution differs from the training distribution. We consider a setting where our training set consists of a small number of sample d...
Ruslan Salakhutdinov, Sham M. Kakade, Dean P. Fost...
Certain classes of problems amenable to description using Problem Frames, in particular ones intended to be implemented using a distributed architecture, can benefit by the additi...