This paper presents a new image segmentation framework which employs a shape prior in the form of an edge strength function to introduce a higher-level influence on the segmentati...
Object detectors are typically trained on a large set of still images annotated by bounding-boxes. This paper introduces an approach for learning object detectors from realworld w...
Alessandro Prest, Christian Leistner, Javier Civer...
Learning a new object class from cluttered training images is very challenging when the location of object instances is unknown. Previous works generally require objects covering a...
We present a new unsupervised method to learn unified probabilistic object models (POMs) which can be applied to classification, segmentation, and recognition. We formulate this a...
Yuanhao Chen, Long Zhu, Alan L. Yuille, HongJiang ...
In this paper we describe the first stage of a new learning system for object detection and recognition. For our system we propose Boosting [5] as the underlying learning technique...
Andreas Opelt, Michael Fussenegger, Axel Pinz, Pet...