We introduce an expectation maximizationtype (EM) algorithm for maximum likelihood optimization of conditional densities. It is applicable to hidden variable models where the dist...
In this paper, we extend the recently proposed Core Vector Machine algorithm to the regression setting by generalizing the underlying minimum enclosing ball problem. The resultant...
We present an efficient "sparse sampling" technique for approximating Bayes optimal decision making in reinforcement learning, addressing the well known exploration vers...
Tao Wang, Daniel J. Lizotte, Michael H. Bowling, D...
A logistic regression classification algorithm is developed for problems in which the feature vectors may be missing data (features). Single or multiple imputation for the missing...
David Williams, Xuejun Liao, Ya Xue, Lawrence Cari...
We apply nonparametric hierarchical Bayesian modelling to relational learning. In a hierarchical Bayesian approach, model parameters can be "personalized", i.e., owned b...
Zhao Xu, Volker Tresp, Kai Yu, Shipeng Yu, Hans-Pe...