Abstract--Reinforcement learning (RL) research typically develops algorithms for helping an RL agent best achieve its goals-however they came to be defined--while ignoring the rela...
This paper develops a generalized apprenticeship learning protocol for reinforcementlearning agents with access to a teacher who provides policy traces (transition and reward obse...
Thomas J. Walsh, Kaushik Subramanian, Michael L. L...
Learning temporal causal graph structures from multivariate time-series data reveals important dependency relationships between current observations and histories, and provides a ...
Yan Liu 0002, Alexandru Niculescu-Mizil, Aurelie C...
Imagine two identical people receive exactly the same training on how to classify certain objects. Perhaps surprisingly, we show that one can then manipulate them into classifying...
Xiaojin Zhu, Bryan R. Gibson, Kwang-Sung Jun, Timo...
Hidden Markov Models (HMMs) are important tools for modeling sequence data. However, they are restricted to discrete latent states, and are largely restricted to Gaussian and disc...
Le Song, Sajid M. Siddiqi, Geoffrey J. Gordon, Ale...