The quality of large-scale recommendation systems has been insufficient in terms of the accuracy of prediction. One of the major reasons is caused by the sparsity of the samples, ...
In this work, a new learning paradigm called target selection is proposed, which can be used to test for associations between a single genetic variable and a multidimensional, qua...
Johannes Mohr, Sambu Seo, Imke Puis, Andreas Heinz...
In this paper, we introduce two new formulations for multi-class multi-kernel relevance vector machines (mRVMs) that explicitly lead to sparse solutions, both in samples and in nu...
Theodoros Damoulas, Yiming Ying, Mark A. Girolami,...
Though the TNM (Tumor, Lymph Node, Metastasis) is a widely used staging system for predicting the outcome of cancer patients, it is limited in prediction mainly because it does no...
We describe our contribution to the ICMLA2008 "Automated Micro-Array Classification Challenge". The design of our classifier is motivated by the special scenario encounte...
Donald Geman, Bahman Afsari, Aik Choon Tan, Daniel...