Variational Bayesian (VB) methods are typically only applied to models in the conjugate-exponential family using the variational Bayesian expectation maximisation (VB EM) algorith...
Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti...
We present a new estimation principle for parameterized statistical models. The idea is to perform nonlinear logistic regression to discriminate between the observed data and some...
Many real world applications employ multivariate performance measures and each example can belong to multiple classes. The currently most popular approaches train an SVM for each ...
Machine learning methods that can use additional knowledge in their inference process are central to the development of integrative bioinformatics. Inclusion of background knowled...
Minca Mramor, Marko Toplak, Gregor Leban, Tomaz Cu...
To handle problems created by large data sets, we propose a method that uses a decision tree to decompose a given data space and train SVMs on the decomposed regions. Although the...
Fu Chang, Chien-Yang Guo, Xiao-Rong Lin, Chi-Jen L...