We present a new class of models for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse line...
Pradeep D. Ravikumar, Han Liu, John D. Lafferty, L...
This paper introduces kernels on attributed pointsets, which are sets of vectors embedded in an euclidean space. The embedding gives the notion of neighborhood, which is used to d...
The peristimulus time histogram (PSTH) and its more continuous cousin, the spike density function (SDF) are staples in the analytic toolkit of neurophysiologists. The former is us...
Dominik Endres, Mike W. Oram, Johannes E. Schindel...
Although kernel measures of independence have been widely applied in machine learning (notably in kernel ICA), there is as yet no method to determine whether they have detected st...
Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le ...
It is becoming increasingly important to learn from a partially-observed random matrix and predict its missing elements. We assume that the entire matrix is a single sample drawn ...