We claim and present arguments to the effect that a large class of manifold learning algorithms that are essentially local and can be framed as kernel learning algorithms will suf...
We consider the problem of structured classification, where the task is to predict a label y from an input x, and y has meaningful internal structure. Our framework includes super...
Peter L. Bartlett, Michael Collins, Benjamin Taska...
Motor control depends on sensory feedback in multiple modalities with different latencies. In this paper we consider within the framework of reinforcement learning how different s...
Fredrik Bissmarck, Hiroyuki Nakahara, Kenji Doya, ...
In contrast to the equivalence of linear blind source separation and linear independent component analysis it is not possible to recover the original source signal from some unkno...
We propose a probabilistic, generative account of configural learning phenomena in classical conditioning. Configural learning experiments probe how animals discriminate and gener...
Aaron C. Courville, Nathaniel D. Daw, David S. Tou...