We investigate an approach for simultaneously committing to multiple activities, each modeled as a temporally extended action in a semi-Markov decision process (SMDP). For each ac...
Khashayar Rohanimanesh, Robert Platt Jr., Sridhar ...
We present a semi-parametric latent variable model based technique for density modelling, dimensionality reduction and visualization. Unlike previous methods, we estimate the late...
Many works have shown that strong connections relate learning from examples to regularization techniques for ill-posed inverse problems. Nevertheless by now there was no formal ev...
Lorenzo Rosasco, Andrea Caponnetto, Ernesto De Vit...
We describe semi-Markov conditional random fields (semi-CRFs), a conditionally trained version of semi-Markov chains. Intuitively, a semiCRF on an input sequence x outputs a "...
We consider the situation in semi-supervised learning, where the "label sampling" mechanism stochastically depends on the true response (as well as potentially on the fe...