Sciweavers

124
Voted
ICML
2001
IEEE
16 years 1 months ago
Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
We present conditional random fields, a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hid...
John D. Lafferty, Andrew McCallum, Fernando C. N. ...
132
Voted
ICML
2003
IEEE
16 years 1 months ago
Hidden Markov Support Vector Machines
This paper presents a novel discriminative learning technique for label sequences based on a combination of the two most successful learning algorithms, Support Vector Machines an...
Yasemin Altun, Ioannis Tsochantaridis, Thomas Hofm...
103
Voted
CVPR
2007
IEEE
16 years 3 months ago
Discriminative Learning of Dynamical Systems for Motion Tracking
We introduce novel discriminative learning algorithms for dynamical systems. Models such as Conditional Random Fields or Maximum Entropy Markov Models outperform the generative Hi...
Minyoung Kim, Vladimir Pavlovic