Sciweavers

COCOON
2006
Springer

Fixed Linear Crossing Minimization by Reduction to the Maximum Cut Problem

13 years 10 months ago
Fixed Linear Crossing Minimization by Reduction to the Maximum Cut Problem
Many real-life scheduling, routing and location problems can be formulated as combinatorial optimization problems whose goal is to find a linear layout of an input graph in such a way that the number of edge crossings is minimized. In this paper, we study a restricted version of the linear layout problem where the order of vertices on the line is fixed, the so-called fixed linear crossing number problem (FLCNP). We show that this NP-hard problem can be reduced to the well-known maximum cut problem. The latter problem was intensively studied in the literature; efficient exact algorithms based on the branch-and-cut technique have been developed. By an experimental evaluation on a variety of graphs, we show that using this reduction for solving FLCNP compares favorably to earlier branch-and-bound algorithms.
Christoph Buchheim, Lanbo Zheng
Added 20 Aug 2010
Updated 20 Aug 2010
Type Conference
Year 2006
Where COCOON
Authors Christoph Buchheim, Lanbo Zheng
Comments (0)