The world’s demand for sugar and particularly for renewable fuels such as ethanol requires an increase in production in sugar mills. The use of artificial neural networks (ANN) posed as a predictive core associated with the algorithm NSGA-II aims at helping decision makers to optimize the multi-objective harvest problem. This paper presents two approaches and the good results achieved as compared with other classical techniques. 							
						
							
					 															
					Diogo Ferreira Pacheco, Tarcísio Daniel P.