Sciweavers

90
Voted
MCS
2008
Springer

Approximation of matrix operators applied to multiple vectors

14 years 10 months ago
Approximation of matrix operators applied to multiple vectors
In this paper we propose a numerical method for approximating the product of a matrix function with multiple vectors by Krylov subspace methods combined with a QR decomposition of these vectors. This problem arises in the implementation of exponential integrators for semilinear parabolic problems. We will derive reliable stopping criteria and we suggest variants using up- and downdating techniques. Moreover, we show how Ritz vectors can be included in order to speed up the computation even further. By a number of numerical examples, we will illustrate that the proposed method will reduce the total number of Krylov steps significantly compared to a standard implementation if the vectors correspond to the evaluation of a smooth function at certain quadrature points. Key words: Krylov subspace methods, shift and invert Lanczos process, projection method, matrix exponential function, matrix functions, restarts, error analysis, QR decomposition, multiple right-hand sides, exponential integ...
Marlis Hochbruck, Jörg Niehoff
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2008
Where MCS
Authors Marlis Hochbruck, Jörg Niehoff
Comments (0)