Sciweavers

CVPR
2008
IEEE

Simultaneous clustering and tracking unknown number of objects

15 years 23 days ago
Simultaneous clustering and tracking unknown number of objects
In this paper, we present a novel on-line probabilistic generative model that simultaneously deals with both the clustering and the tracking of an unknown number of moving objects. The proposed model assumes that i) time series data are composed of a time-varying number of objects and that ii) each object is governed by a mixture of an unknown number of different patterns of dynamics. The problem of learning patterns of dynamics is formulated as the clustering of tracked objects based on a nonparametric Bayesian model with conjugate priors, and this clustering in turn improves the tracking. We present a particle filter for posterior estimation of simultaneous clustering and tracking. Through experiments with synthetic and real movie data, we confirmed that the proposed model successfully learned the hidden cluster patterns and obtained better tracking results than conventional models without clustering.
Katsuhiko Ishiguro, Takeshi Yamada, Naonori Ueda
Added 12 Oct 2009
Updated 28 Oct 2009
Type Conference
Year 2008
Where CVPR
Authors Katsuhiko Ishiguro, Takeshi Yamada, Naonori Ueda
Comments (0)