We introduce the patch transform, where an image is broken into non-overlapping patches, and modifications or constraints are applied in the "patch domain". A modified image is then reconstructed from the patches, subject to those constraints. When no constraints are given, the reconstruction problem reduces to solving a jigsaw puzzle. Constraints the user may specify include the spatial locations of patches, the size of the output image, or the pool of patches from which an image is reconstructed. We define terms in a Markov network to specify a good image reconstruction from patches: neighboring patches must fit to form a plausible image, and each patch should be used only once. We find an approximate solution to the Markov network using loopy belief propagation, introducing an approximation to handle the combinatorially difficult patch exclusion constraint. The resulting image reconstructions show the original image, modified to respect the user's changes. We apply t...