Structured-light methods actively generate geometric correspondence data between projectors and cameras in order to facilitate robust 3D reconstruction. In this paper, we present Photogeometric Structured Light whereby a standard structured light method is extended to include photometric methods. Photometric processing serves the double purpose of increasing the amount of recovered surface detail and of enabling the structured-light setup to be robustly self-calibrated. Further, our framework uses a photogeometric optimization that supports the simultaneous use of multiple cameras and projectors and yields a single and accurate multi-view 3D model which best complies with photometric and geometric data.
Daniel G. Aliaga, Yi Xu