Sciweavers

MOC
2000

Adaptive multilevel methods in space and time for parabolic problems-the periodic case

13 years 10 months ago
Adaptive multilevel methods in space and time for parabolic problems-the periodic case
The aim of this paper is to display numerical results that show the interest of some multilevel methods for problems of parabolic type. These schemes are based on multilevel spatial splittings and the use of different time steps for the various spatial components. The spatial discretization we investigate is of spectral Fourier type, so the approximate solution naturally splits into the sum of a low frequency component and a high frequency one. The time discretization is of implicit/explicit Euler type for each spatial component. Based on a posteriori estimates, we introduce adaptive one-level and multilevel algorithms. Two problems are considered: the heat equation and a nonlinear problem. Numerical experiments are conducted for both problems using the one-level and the multilevel algorithms. The multilevel method is up to 70% faster than the one-level method.
J. B. Burie, M. Marion
Added 19 Dec 2010
Updated 19 Dec 2010
Type Journal
Year 2000
Where MOC
Authors J. B. Burie, M. Marion
Comments (0)