Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ADAC

2008

2008

We consider the problem of multiple fitting of linearly parametrized curves, that arises in many computer vision problems such as road scene analysis. Data extracted from images usually contain non-Gaussian noise and outliers, which makes classical estimation methods ineffective. In this paper, we first introduce a family of robust probability density functions which appears to be well-suited to many real-world problems. Also, such noise models are suitable for defining continuation heuristics to escape shallow local minima and their robustness is devised in terms of breakdown point. Second, the usual Iterative Reweighted Least Squares (IRLS) robust estimator is extended to the problem of robustly estimating sets of linearly parametrized curves. The resulting, non convex optimization problem is tackled within a Lagrangian approach, leading to the so-called Simultaneous Robust Multiple Fitting (SRMF) algorithm, whose global convergence to a local minimum is proved using results from con...

Added |
08 Dec 2010 |

Updated |
17 Dec 2010 |

Type |
Journal |

Year |
2008 |

Where |
ADAC |

Authors |
Jean-Philippe Tarel, Sio-Song Ieng, Pierre Charbonnier |

http://perso.lcpc.fr/tarel.jean-philippe/publis/adac08.html

Comments (0)