Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

EMMCVPR

2001

Springer

2001

Springer

Recent work (Yedidia, Freeman, Weiss [22]) has shown that stable points of belief propagation (BP) algorithms [12] for graphs with loops correspond to extrema of the Bethe free energy [3]. These BP algorithms have been used to obtain good solutions to problems for which alternative algorithms fail to work [4], [5], [10] [11]. In this paper we introduce a discrete iterative algorithm which we prove is guaranteed to converge to a minimum of the Bethe free energy. We call this the double-loop algorithm because it contains an inner and an outer loop. The algorithm is developed by decomposing the free energy into a convex part and a concave part, see [25], and extends a class of mean ﬁeld theory algorithms developed by [7],[8] and, in particular, [13]. Moreover, the double-loop algorithm is formally very similar to BP which may help understand when BP converges. In related work [24] we extend this work to the more general Kikuchi approximation [3] which includes the Bethe free energy as a...

Related Content

Added |
28 Jul 2010 |

Updated |
28 Jul 2010 |

Type |
Conference |

Year |
2001 |

Where |
EMMCVPR |

Authors |
Alan L. Yuille |

Comments (0)