Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

UAI

2008

2008

Inference problems in graphical models can be represented as a constrained optimization of a free energy function. It is known that when the Bethe free energy is used, the fixedpoints of the belief propagation (BP) algorithm correspond to the local minima of the free energy. However BP fails to converge in many cases of interest. Moreover, the Bethe free energy is non-convex for graphical models with cycles thus introducing great difficulty in deriving efficient algorithms for finding local minima of the free energy for general graphs. In this paper we introduce two efficient BP-like algorithms, one sequential and the other parallel, that are guaranteed to converge to the global minimum, for any graph, over the class of energies known as "convex free energies". In addition, we propose an efficient heuristic for setting the parameters of the convex free energy based on the structure of the graph.

Related Content

Added |
30 Oct 2010 |

Updated |
30 Oct 2010 |

Type |
Conference |

Year |
2008 |

Where |
UAI |

Authors |
Tamir Hazan, Amnon Shashua |

Comments (0)