Sciweavers

SIGIR
2008
ACM

A new probabilistic retrieval model based on the dirichlet compound multinomial distribution

13 years 11 months ago
A new probabilistic retrieval model based on the dirichlet compound multinomial distribution
The classical probabilistic models attempt to capture the Ad hoc information retrieval problem within a rigorous probabilistic framework. It has long been recognized that the primary obstacle to effective performance of the probabilistic models is the need to estimate a relevance model. The Dirichlet compound multinomial (DCM) distribution , which relies on hierarchical Bayesian modeling techniques, or the Polya Urn scheme, is a more appropriate generative model than the traditional multinomial distribution for text documents. We explore a new probabilistic model based on the DCM distribution, which enables efficient retrieval and accurate ranking. Because the DCM distribution captures the dependency of repetitive word occurrences, the new probabilistic model is able to model the concavity of the score function more effectively. To avoid the empirical tuning of retrieval parameters, we design several parameter estimation algorithms to automatically set model parameters. Additionally, ...
Zuobing Xu, Ram Akella
Added 15 Dec 2010
Updated 15 Dec 2010
Type Journal
Year 2008
Where SIGIR
Authors Zuobing Xu, Ram Akella
Comments (0)