Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

PVM

1997

Springer

1997

Springer

The traditional approach to the parallelization of linear algebra algorithms such as matrix multiplication and LU factorization calls for static allocation of matrix blocks to processing elements (PEs). Such algorithms suffer from two drawbacks : they are very sensitive to load imbalances between PEs and they make it difficult to take advantage of pipelining opportunities. This paper describes dynamic versions of linear algebra algorithms, where subtasks (matrix block multiplication, matrix block LU factorization) are dynamically allocated to PEs. It analyses theoretically the performance of the dynamic algorithms. This paper’s contribution is to show that the dynamicpipelined linear-algebra algorithms can be specified compactly in CAP and yet achieve good performance. CAP is a C++ language extension for the specification of parallel applications based on macro-dataflow graphs. The CAP model, based on macro-dataflow graphs, is general and supports pipelining.

Related Content

Added |
08 Aug 2010 |

Updated |
08 Aug 2010 |

Type |
Conference |

Year |
1997 |

Where |
PVM |

Authors |
Marc Mazzariol, Benoit A. Gennart, Vincent Messerli, Roger D. Hersch |

Comments (0)