Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

IOR

2008

2008

We introduce and study a randomized quasi-Monte Carlo method for estimating the state distribution at each step of a Markov chain. The number of steps in the chain can be random and unbounded. The method simulates n copies of the chain in parallel, using a (d + 1)-dimensional highly-uniform point set of cardinality n, randomized independently at each step, where d is the number of uniform random numbers required at each transition of the Markov chain. This technique is effective in particular to obtain a low-variance unbiased estimator of the expected total cost up to some random stopping time, when state-dependent costs are paid at each step. It is generally more effective when the state space has a natural order related to the cost function. We provide numerical illustrations where the variance reduction with respect to standard Monte Carlo is substantial. The variance can be reduced by factors of several thousands in some cases. We prove bounds on the convergence rate of the worst-c...

Related Content

Added |
12 Dec 2010 |

Updated |
12 Dec 2010 |

Type |
Journal |

Year |
2008 |

Where |
IOR |

Authors |
Pierre L'Ecuyer, Christian Lécot, Bruno Tuffin |

Comments (0)