We propose a novel technique for semi-supervised image annotation which introduces a harmonic regularizer based on the graph Laplacian of the data into the probabilistic semantic model for learning latent topics of the images. By using a probabilistic semantic model, we connect visual features and textual annotations of images by their latent topics. Meanwhile, we incorporate the manifold assumption into the model to say that the probabilities of latent topics of images are drawn from a manifold, so that for images sharing similar visual features or the same annotations, their probability distribution of latent topics should also be similar. We create a nearest neighbor graph to model the manifold and propose a regularized EM algorithm to simultaneously learn a generative model and assign probability density of latent topics to images discriminatively. In this way, databases with very few labeled images can be annotated better than previous works. Categories and Subject Descriptors H....