Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

IJCV

2006

2006

We present an algebraic geometric approach to 3-D motion estimation and segmentation of multiple rigid-body motions from noise-free point correspondences in two perspective views. Our approach exploits the algebraic and geometric properties of the so-called multibody epipolar constraint and its associated multibody fundamental matrix, which are natural generalizations of the epipolar constraint and of the fundamental matrix to multiple motions. We derive a rank constraint on a polynomial embedding of the correspondences, from which one can estimate the number of independent motions as well as linearly solve for the multibody fundamental matrix. We then show how to compute the epipolar lines from the first-order derivatives of the multibody epipolar constraint and the epipoles by solving a plane clustering problem using Generalized PCA (GPCA). Given the epipoles and epipolar lines, the estimation of individual fundamental matrices becomes a linear problem. The clustering of the feature ...

Related Content

Added |
12 Dec 2010 |

Updated |
12 Dec 2010 |

Type |
Journal |

Year |
2006 |

Where |
IJCV |

Authors |
René Vidal, Yi Ma, Stefano Soatto, Shankar Sastry |

Comments (0)