Data Mining with Bayesian Network learning has two important characteristics: under broad conditions learned edges between variables correspond to causal influences, and second, f...
Ioannis Tsamardinos, Constantin F. Aliferis, Alexa...
There is increasing research interest in solving routing problems in sensor networks subject to constraints such as data correlation, link reliability and energy conservation. Sin...
We recall the basic idea of an algebraic approach to learning Bayesian network (BN) structures, namely to represent every BN structure by a certain (uniquely determined) vector, c...
Uncertainty is omnipresent when we perceive or interact with our environment, and the Bayesian framework provides computational methods for dealing with it. Mathematical models fo...
Bernhard Nessler, Michael Pfeiffer, Wolfgang Maass
In recent years, a number of algorithms have been developed for learning the structure of Bayesian networks from data. In this paper we apply some of these algorithms to a realist...
Xiaofeng Wu, Peter J. F. Lucas, Susan Kerr, Roelf ...