Sciweavers

221 search results - page 14 / 45
» A Linear Decision-Based Approximation Approach to Stochastic...
Sort
View
83
Voted
UAI
2008
14 years 11 months ago
Sparse Stochastic Finite-State Controllers for POMDPs
Bounded policy iteration is an approach to solving infinitehorizon POMDPs that represents policies as stochastic finitestate controllers and iteratively improves a controller by a...
Eric A. Hansen
HYBRID
2007
Springer
15 years 3 months ago
Robust, Optimal Predictive Control of Jump Markov Linear Systems Using Particles
Hybrid discrete-continuous models, such as Jump Markov Linear Systems, are convenient tools for representing many real-world systems; in the case of fault detection, discrete jumps...
Lars Blackmore, Askar Bektassov, Masahiro Ono, Bri...
AIPS
2006
14 years 11 months ago
Solving Factored MDPs with Exponential-Family Transition Models
Markov decision processes (MDPs) with discrete and continuous state and action components can be solved efficiently by hybrid approximate linear programming (HALP). The main idea ...
Branislav Kveton, Milos Hauskrecht
84
Voted
APPROX
2005
Springer
111views Algorithms» more  APPROX 2005»
15 years 3 months ago
Sampling Bounds for Stochastic Optimization
A large class of stochastic optimization problems can be modeled as minimizing an objective function f that depends on a choice of a vector x ∈ X, as well as on a random external...
Moses Charikar, Chandra Chekuri, Martin Pál
UAI
2004
14 years 11 months ago
Solving Factored MDPs with Continuous and Discrete Variables
Although many real-world stochastic planning problems are more naturally formulated by hybrid models with both discrete and continuous variables, current state-of-the-art methods ...
Carlos Guestrin, Milos Hauskrecht, Branislav Kveto...