Sciweavers

104 search results - page 3 / 21
» A New Multiple Kernel Approach for Visual Concept Learning
Sort
View
ICPR
2008
IEEE
15 years 10 months ago
Incremental learning in non-stationary environments with concept drift using a multiple classifier based approach
We outline an incremental learning algorithm designed for nonstationary environments where the underlying data distribution changes over time. With each dataset drawn from a new e...
Matthew T. Karnick, Michael Muhlbaier, Robi Polika...
ICPR
2004
IEEE
15 years 10 months ago
Kernel Autoassociator with Applications to Visual Classification
Autoassociator is an important issue in concept learning, and the learned concept of a particular class can be used to distinguish the class from the others. For nonlinear autoass...
Bailing Zhang, Haihong Zhang, Weimin Huang, Zhiyon...
ICCV
2009
IEEE
14 years 7 months ago
Incremental Multiple Kernel Learning for object recognition
A good training dataset, representative of the test images expected in a given application, is critical for ensuring good performance of a visual categorization system. Obtaining ...
Aniruddha Kembhavi, Behjat Siddiquie, Roland Miezi...
DAGM
2010
Springer
14 years 10 months ago
Random Fourier Approximations for Skewed Multiplicative Histogram Kernels
Abstract. Approximations based on random Fourier features have recently emerged as an efficient and elegant methodology for designing large-scale kernel machines [4]. By expressing...
Fuxin Li, Catalin Ionescu, Cristian Sminchisescu
ICPR
2008
IEEE
15 years 10 months ago
Multiple kernel learning from sets of partially matching image features
Abstract: Kernel classifiers based on Support Vector Machines (SVM) have achieved state-ofthe-art results in several visual classification tasks, however, recent publications and d...
Guo ShengYang, Min Tan, Si-Yao Fu, Zeng-Guang Hou,...