Sciweavers

165 search results - page 5 / 33
» Adaptive dimension reduction for clustering high dimensional...
Sort
View
PODS
2001
ACM
190views Database» more  PODS 2001»
16 years 1 months ago
On the Effects of Dimensionality Reduction on High Dimensional Similarity Search
The dimensionality curse has profound e ects on the effectiveness of high-dimensional similarity indexing from the performance perspective. One of the well known techniques for im...
Charu C. Aggarwal
PAMI
2011
14 years 8 months ago
Multiple Kernel Learning for Dimensionality Reduction
—In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance. The resulting ...
Yen-Yu Lin, Tyng-Luh Liu, Chiou-Shann Fuh
ICML
2007
IEEE
16 years 2 months ago
Adaptive dimension reduction using discriminant analysis and K-means clustering
We combine linear discriminant analysis (LDA) and K-means clustering into a coherent framework to adaptively select the most discriminative subspace. We use K-means clustering to ...
Chris H. Q. Ding, Tao Li
ADMA
2008
Springer
124views Data Mining» more  ADMA 2008»
15 years 3 months ago
Dimensionality Reduction for Classification
We investigate the effects of dimensionality reduction using different techniques and different dimensions on six two-class data sets with numerical attributes as pre-processing fo...
Frank Plastria, Steven De Bruyne, Emilio Carrizosa
CIDM
2007
IEEE
15 years 7 months ago
Scalable Clustering for Large High-Dimensional Data Based on Data Summarization
Clustering large data sets with high dimensionality is a challenging data-mining task. This paper presents a framework to perform such a task efficiently. It is based on the notio...
Ying Lai, Ratko Orlandic, Wai Gen Yee, Sachin Kulk...