Sciweavers

86 search results - page 6 / 18
» Approximation of Gaussian process regression models after tr...
Sort
View
ICCV
2009
IEEE
14 years 7 months ago
Bayesian Poisson regression for crowd counting
Poisson regression models the noisy output of a counting function as a Poisson random variable, with a log-mean parameter that is a linear function of the input vector. In this wo...
Antoni B. Chan, Nuno Vasconcelos
RSS
2007
159views Robotics» more  RSS 2007»
14 years 11 months ago
Gaussian Beam Processes: A Nonparametric Bayesian Measurement Model for Range Finders
— In probabilistic mobile robotics, the development of measurement models plays a crucial role as it directly influences the efficiency and the robustness of the robot’s perf...
Christian Plagemann, Kristian Kersting, Patrick Pf...
UAI
2008
14 years 11 months ago
Modelling local and global phenomena with sparse Gaussian processes
Much recent work has concerned sparse approximations to speed up the Gaussian process regression from the unfavorable O(n3 ) scaling in computational time to O(nm2 ). Thus far, wo...
Jarno Vanhatalo, Aki Vehtari
ICANN
2011
Springer
14 years 29 days ago
Learning from Multiple Annotators with Gaussian Processes
Abstract. In many supervised learning tasks it can be costly or infeasible to obtain objective, reliable labels. We may, however, be able to obtain a large number of subjective, po...
Perry Groot, Adriana Birlutiu, Tom Heskes
77
Voted
ESANN
2003
14 years 11 months ago
Approximately unbiased estimation of conditional variance in heteroscedastic kernel ridge regression
In this paper we extend a form of kernel ridge regression for data characterised by a heteroscedastic noise process (introduced in Foxall et al. [1]) in order to provide approxima...
Gavin C. Cawley, Nicola L. C. Talbot, Robert J. Fo...