The performance of Artificial Neural Networks is largely influenced by the value of their parameters. Among these free parameters, one can mention those related with the network a...
Perhaps the most common question that a microarray study can ask is, “Between two given biological conditions, which genes exhibit changed expression levels?” Existing methods...
Will Sheffler, Eli Upfal, John Sedivy, William Sta...
We present a novel classification-based algorithm called GeneClass for learning to predict gene regulatory response. Our approach is motivated by the hypothesis that in simple orga...
Manuel Middendorf, Anshul Kundaje, Chris Wiggins, ...
We propose a robust estimation method of gene networks based on microarray gene expression data. It is well-known that microarray data contain a large amount of noise and some outl...
Seiya Imoto, Tomoyuki Higuchi, SunYong Kim, Euna J...
Many statistical methods have been proposed to estimate causal models in classical situations with fewer variables than observations. However, modern datasets including gene expres...