We propose a general method to watermark and probabilistically identify the structured outputs of machine learning algorithms. Our method is robust to local editing operations and...
Ashish Venugopal, Jakob Uszkoreit, David Talbot, F...
In an ordinary syntactic parser, the input is a string, and the grammar ranges over strings. This paper explores generalizations of ordinary parsing algorithms that allow the inpu...
We achieved a state of the art performance in statistical machine translation by using a large number of features with an online large-margin training algorithm. The millions of p...
Taro Watanabe, Jun Suzuki, Hajime Tsukada, Hideki ...
We explore how to improve machine translation systems by adding more translation data in situations where we already have substantial resources. The main challenge is how to buck ...
In statistical machine translation, a researcher seeks to determine whether some innovation (e.g., a new feature, model, or inference algorithm) improves translation quality in co...
Jonathan H. Clark, Chris Dyer, Alon Lavie, Noah A....