We consider the general problem of learning from both labeled and unlabeled data. Given a set of data points, only a few of them are labeled, and the remaining points are unlabele...
Fei Wang, Changshui Zhang, Helen C. Shen, Jingdong...
This paper provides evidence that the use of more unlabeled data in semi-supervised learning can improve the performance of Natural Language Processing (NLP) tasks, such as part-o...
Several recent discourse parsers have employed fully-supervised machine learning approaches. These methods require human annotators to beforehand create an extensive training corp...
Hugo Hernault, Danushka Bollegala, Mitsuru Ishizuk...
Many semi-supervised learning algorithms only
deal with binary classification. Their extension to the
multi-class problem is usually obtained by repeatedly
solving a set of bina...
Random Forests (RFs) have become commonplace
in many computer vision applications. Their
popularity is mainly driven by their high computational
efficiency during both training ...
Christian Leistner, Amir Saffari, Jakob Santner, H...