Sciweavers

582 search results - page 47 / 117
» Gaussian Processes in Reinforcement Learning
Sort
View
ICML
2006
IEEE
15 years 10 months ago
Using inaccurate models in reinforcement learning
In the model-based policy search approach to reinforcement learning (RL), policies are found using a model (or "simulator") of the Markov decision process. However, for ...
Pieter Abbeel, Morgan Quigley, Andrew Y. Ng
ILP
2007
Springer
15 years 3 months ago
Building Relational World Models for Reinforcement Learning
Abstract. Many reinforcement learning domains are highly relational. While traditional temporal-difference methods can be applied to these domains, they are limited in their capaci...
Trevor Walker, Lisa Torrey, Jude W. Shavlik, Richa...
FUZZIEEE
2007
IEEE
15 years 4 months ago
Fuzzy Approximation for Convergent Model-Based Reinforcement Learning
— Reinforcement learning (RL) is a learning control paradigm that provides well-understood algorithms with good convergence and consistency properties. Unfortunately, these algor...
Lucian Busoniu, Damien Ernst, Bart De Schutter, Ro...
ICRA
2006
IEEE
131views Robotics» more  ICRA 2006»
15 years 3 months ago
Using Reinforcement Learning to Improve Exploration Trajectories for Error Minimization
Abstract— The mapping and localization problems have received considerable attention in robotics recently. The exploration problem that drives mapping has started to generate sim...
Thomas Kollar, Nicholas Roy
NIPS
2001
14 years 11 months ago
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning
Policy gradient methods for reinforcement learning avoid some of the undesirable properties of the value function approaches, such as policy degradation (Baxter and Bartlett, 2001...
Evan Greensmith, Peter L. Bartlett, Jonathan Baxte...