— Bayesian networks have extensively been used in numerous fields including artificial intelligence, decision theory and control. Its ability to utilize noisy and missing data ...
Thanura R. Elvitigala, Abhay K. Singh, Himadri B. ...
Design and development of novel human-computer interfaces poses a challenging problem: actions and intentions of users have to be inferred from sequences of noisy and ambiguous mu...
Vladimir Pavlovic, James M. Rehg, Ashutosh Garg, T...
Background: Proteins are the primary regulatory agents of transcription even though mRNA expression data alone, from systems like DNA microarrays, are widely used. In addition, th...
Reuben Thomas, Carlos J. Paredes, Sanjay Mehrotra,...
Background: Identifying candidate genes in genetic networks is important for understanding regulation and biological function. Large gene expression datasets contain relevant info...
Anup Parikh, Eryong Huang, Christopher Dinh, Blaz ...
Bayesian networks are an attractive modeling tool for human sensing, as they combine an intuitive graphical representation with ef?cient algorithms for inference and learning. Ear...
Tanzeem Choudhury, James M. Rehg, Vladimir Pavlovi...