Sciweavers

164 search results - page 15 / 33
» Heteroscedastic Gaussian process regression
Sort
View

Book
778views
16 years 10 months ago
Gaussian Processes for Machine Learning
"Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning...
Carl Edward Rasmussen and Christopher K. I. Willia...
DSMML
2004
Springer
15 years 5 months ago
Extensions of the Informative Vector Machine
The informative vector machine (IVM) is a practical method for Gaussian process regression and classification. The IVM produces a sparse approximation to a Gaussian process by com...
Neil D. Lawrence, John C. Platt, Michael I. Jordan
CVPR
2010
IEEE
14 years 12 months ago
Robust RVM regression using sparse outlier model
Kernel regression techniques such as Relevance Vector Machine (RVM) regression, Support Vector Regression and Gaussian processes are widely used for solving many computer vision p...
Kaushik Mitra, Ashok Veeraraghavan, Rama Chellappa
BMVC
2010
14 years 9 months ago
Local Gaussian Processes for Pose Recognition from Noisy Inputs
Gaussian processes have been widely used as a method for inferring the pose of articulated bodies directly from image data. While able to model complex non-linear functions, they ...
Martin Fergie, Aphrodite Galata
RSS
2007
159views Robotics» more  RSS 2007»
15 years 1 months ago
Gaussian Beam Processes: A Nonparametric Bayesian Measurement Model for Range Finders
— In probabilistic mobile robotics, the development of measurement models plays a crucial role as it directly influences the efficiency and the robustness of the robot’s perf...
Christian Plagemann, Kristian Kersting, Patrick Pf...